What happens once the DNA from the HIV particle enters the cell nucleus?

When physicians in Los Angeles and other cities noted an unusually large number of opportunistic microbial infections. Destruction of T lymphocytes of the immune system cells were associated with these infections, and it soon became obvious that an epidemic of disease was in progress. By 1984 the responsible virus had been identified, and in 1986 it was given the name human immunodeficiency virus (HIV). HIV is a very fragile virus, and for this reason it does not survive long periods of exposure outside the body.
In infected individuals, HIV infects T lymphocytes by combining its spike glycoproteins with the CD4 receptor sites of T lymphocytes. The nucleocapsid enters the cytoplasm of the T lymphocyte, and the viral enzyme reverse transcriptase synthesizes a DNA molecule using the RNA of HIV as a template (for this reason, the virus is called a retrovirus). The DNA molecule migrates to the cell nucleus and becomes part of a chromosome in the T lymphocyte nucleus.
The DNA molecule, known as a provirus, assumes a relationship with the DNA of the T lymphocyte, and the provirus enters the state of lysogeny. From this point in the nucleus, the provirus encodes new HIV particles, which acquire their envelope by budding through the membrane of the T lymphocyte. The human body attempts to keep up with the mass of new viral particles, but eventually the newly emerging strains of HIV overwhelm the body defenses and the T lymphocyte count begins to drop. Normally, it is approximately 800 T lymphocytes per cubic millimeter of blood, but as the disease progresses, the count drops into the low hundreds and tens. This drop may occur as soon as weeks after infection or as long as 20 years or more after infection. Thus far, vaccines are not available against HIV. Two glycoproteins called gp120 and gp160 from the envelope are being investigated as possible vaccines. Vaccine development is hampered however, since it is difficult to find volunteers who would become antibody- positive and could suffer discrimination as a result of antibody presence. Nevertheless, candidate vaccines have been prepared with gp120 and gp160. Many candidate vaccines are now in the testing stage